Utilizing RBF-NN and ANFIS Methods for Multi-Lead ahead Prediction Model of Evaporation from Reservoir

نویسندگان

  • Mohammed Falah Allawi
  • Ahmed El-Shafie
چکیده

Evaporation as a major meteorological component of the hydrologic cycle plays a key role in water resources studies and climate change. The estimation of evaporation is a complex and unsteady process, so it is difficult to derive an accurate physical-based formula to represent all parameters that effect on estimate evaporation. Artificial intelligence-based methods may provide reliable prediction models for several applications in engineering. In this research have been introduced twelve networks with the RBF-NN and ANFIS methods. These models have applied to prediction daily evaporation at Layang reservoir, located in the southeast part of Malaysia. The used meteorological data set to develop the models for prediction daily evaporation rate from water surface for Layang reservoir includes daily air temperature, solar radiation, pan evaporation, and relative humidity that measured at a case study for fourteen years. The obtained result denote to the superiority of the RBF-NN models on the ANFIS models. A comparison of the model performance between RBF-NN and ANFIS models indicated that RBF-NN method presents the best estimates of daily evaporation rate with the minimum MSE 0.0471 , MAE 0.0032, RE and maximum R 0.963.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Forecasting and Sensitivity Analysis of Monthly Evaporation from Siah Bisheh Dam Reservoir using Artificial neural Networks combined with Genetic Algorithm

Evaporation process, the main component of the water cycle in nature, is essential in agricultural studies, hydrology and meteorology, the operation of reservoirs, irrigation and drainage systems, irrigation scheduling and management of water resources. Various methods have been presented for estimating evaporation from free surface including water budget method, evaporation from pan and experi...

متن کامل

Hybrid ANFIS with ant colony optimization algorithm for prediction of shear wave velocity from a carbonate reservoir in Iran

Shear wave velocity (Vs) data are key information for petrophysical, geophysical and geomechanical studies. Although compressional wave velocity (Vp) measurements exist in almost all wells, shear wave velocity is not recorded for most of elderly wells due to lack of technologic tools. Furthermore, measurement of shear wave velocity is to some extent costly. This study proposes a novel methodolo...

متن کامل

تعیین قواعد بهره‌برداری از مخزن سد درودزن با استفاده از شبکه ‌عصبی تطبیق‌پذیر مبتنی بر سیستم استنتاج فازی (ANFIS)

Nowadays, water resource management has been shifted from the construction of new water supply systems to the management and the optimal utilization of the existing ones. In this study, the reservoir operating rules of Doroodzan dam reservoir, located in Fars province, were determined using different methods and the most efficient model was selected. For this purpose, a monthly nonlinear multi-...

متن کامل

ANN Based Modeling for Prediction of Evaporation in Reservoirs (RESEARCH NOTE)

This paper is an attempt to assess the potential and usefulness of ANN based modeling for evaporation prediction from a reservoir, where in classical and empirical equations failed to predict the evaporation accurately. The meteorological data set of daily pan evaporation, temperature, solar radiation, relative humidity, wind speed is used in this study. The performance of feed forward back pro...

متن کامل

Prediction of the waste stabilization pond performance using linear multiple regression and multi-layer perceptron neural network: a case study of Birjand, Iran

Background: Data mining (DM) is an approach used in extracting valuable information from environmental processes. This research depicts a DM approach used in extracting some information from influent and effluent wastewater characteristic data of a waste stabilization pond (WSP) in Birjand, a city in Eastern Iran. Methods: Multiple regression (MR) and neural network (NN) models were examined u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016